
Messiah: A decentralized peer-to-peer blockchain-based

zero-trust information-sharing network

Jim John Johnson Jones Junior II

Liberta Veritás

Abstract

Freedom of speech is the definitive barrier to humanity’s future and must be
preserved at any cost.

This is a response to the centralized control of information distribution
and content moderation from companies, governments, and individuals wish-
ing to control how it flows around the human race to control its freedom of
life.

The only weapon existing for individuals against the monopoly of the
state is the entropy of the universe by using the information-sharing dilemma:

“Once the information has been shared, there is no way to get
the system back to its previous state.”

This paper proposes a way of sharing information without relying on
single points of failure, by using existing technologies.

Keywords: blockchain, information sharing, cryptography, censorship

1. Introduction

Messiah is a decentralized information-sharing network that works on file
distribution mechanisms, based on Bitcoin’s blockchain concept (Nakamoto,
2008), anyone can download these files, authenticate them based on the
public-key infrastructure1 embedded in the file, also validate their contents
within a level of trust defined by the user, by trusting available public keys
and it’s certificate chain.

If at least one copy of any file still exists online, anyone can read its
contents and verify it with the information embedded in it, shared content

1Public-key Infrastructure

Preprint submitted to the Internet March 10, 2024

https://en.wikipedia.org/wiki/Public_key_infrastructure

can refer to other previously shared content as well, so a user wishing to
validate its content can authenticate it’s integrity and authority by going all
the way up in the public certificate chain using the digital signature present
in each data entry of the shared file(s).

A public key infra-structure (Housley et al., 2002) defined in the file is
used to maintain consistency and deal with everything that is needed to au-
thenticate its contents using the digital signatures in each entry. No depen-
dency on external information when authenticating a file shall be preferred as
much as possible: a zero-trust environment without external dependencies.

Once the content file is published and shared online, due to the decen-
tralized nature of the network, there is no mechanism to go back and remove
it, there is no central control of what can or cannot be shared. On the other
hand, there are different levels of trust in the content based on who published
it and how many users referred to its content and shared new files about it.
It shall be validated as trustable content if other nodes of the network hold
its content in high availability within the peer network or any source of files.

Each content can be signed by other parties as trusted, along with meta-
data that may help other users sort through the files and find what they
might be looking for, the metadata and referred content are also shared as
new files within the public network as long as the digital signature mechanism
is intact and can be independently checked.

Also, any content can refer to other content in the network by using a
pre-defined hashing mechanism, a file carrying a referral from other content
should, in principle, carry the original content as well so a user accessing it
can read all the content without relying on downloading more files as they
might not be available all times. If a file needs to be split, it is important to
refer to the previously known file and provide any available known sources
to help other users find its original content.

The distribution of those files is not dependent on a single transmission
protocol, they can be shared through a standard web server, libp2p2, bittor-
rent3 magnetic link, or any protocol that is available at the time the content
is being shared online, the author of the file can list the public repository
link it was originally posted online if he wants as well, within the file itself.

Referrals to other files should preferably be linked to decentralized dis-

2libp2p
3BitTorrent

2

https://libp2p.io/
https://web.cs.ucla.edu/classes/cs217/05BitTorrent.pdf

Figure 1: Basic file format diagram

tribution networks such as libp2p, bittorrent magnetic linking, BTFS, IPFS,
and any future decentralized storage protocols to avoid censorship sanctions
from other parties.

2. File format

The file format is JSON based (Bray, 2014), and each line of the file
is a stand-alone JSON that is both human-readable content and easy for
any software to parse, validate, and authenticate content, conforming to the
JSON Lines format4.

Binary content is encoded in BASE645 format and embedded in the entry
along with metadata to identify what kind of data is encoded, following the
standard media content type naming6.

The basic structure of a Messiah file is this:
[header] line break
[entry 1] line break
[entry 2] line break
[entry n] line break
[index list] line break

4jsonlines.org
5RFC1521
6IANA media-types

3

https://jsonlines.org/
https://www.rfc-editor.org/rfc/rfc1521.html
https://www.iana.org/assignments/media-types/media-types.txt

Figure 2: PKI diagram

Each file must begin with a header, in this header, there is basic infor-
mation about how to validate the file contents, a certificate chain is usually
the basic mechanism, along with a JSON schema 7 version that should be
used as the detailed specification of all the entries in that file.

New entries can be added by any user in the network, as long as the
previous entries are kept with the same payload and can be validated inde-
pendently, the user wishing to add a new entry will attach an entry at the
end of the entry list and update the index list to add the final hash of that
entry to easy the step of referring to individual entries in other files, see 1.

3. File naming

As Messiahs files are based on a zero-trust environment, it is necessary to
check if the file contents have been completely transferred before any checks
on its contents, for this to happen as easily as possible, the file name is used
to provide the hash of it’s final content, the hashing algorithm is SHA-2568,
and the format is:

<hash-256>.messiah
As an example, an empty JSON file ({}), should be named:

ca3d163bab055381827226140568f3bef7eaac187cebd76878e0b63e9e442356.messiah

4

4. Signature

To publish a new entry in a file, be it a new file or an entry in an existing
file previously validated, the publisher of the content must sign the entry to
help other parties validate that the contents are not tainted in any way, to do
that, the user needs to generate an RSA-PSS9 key-pair and sign the content
with his private key, including the signature in the signature field of the new
entry.

The public key must also be inserted in the same entry so that the en-
try can be self-validated independently, this key must be included in PEM
BASE64 encoded format10, or in an X.50911 compliant certificate with addi-
tional information about the publisher.

This certificate can be signed by a trusted party and will provide addi-
tional trust to the publisher of the information. If the certificate is signed by
a trusted party, the publisher must add the complete certificate chain up to
the self-signed certificate authority public key in the header entry, appended
to the existing root certificate chain as the X.509 specification (Housley et al.,
2002) requires to validate certificate chains and any additional intermediate
certificates must be included as well.

The validation of this signature field by other parties can provide in a
single process some irrefutable conclusions:

• That the contents of the entry have not been modified in the trans-
mission, because the signature of the file matches the contents and has
been signed with the public key published in that entry;

• That the public key that was used is valid and has a valid private key
used to sign it;

• If the public key has been published within an X.509 certificate, the
publisher certificate can be verified with the certificate chain up to the
certificate authority, validating that this authority has indeed signed
it;

• If the user trusts the certificate authority that signed the certificate, the
publisher of the information can be trusted as well: chain of trust .

7json-schema.org
8SHA-2
9RFC4055

10RFC7468
11X.509

5

https://json-schema.org/
https://en.wikipedia.org/wiki/SHA-2
https://www.rfc-editor.org/rfc/rfc4055.html
https://www.rfc-editor.org/rfc/rfc7468.html
https://en.wikipedia.org/wiki/X.509

(See Figure 2)

For the signature to be checked in the entry payload, the user must first
remove the signature from the JSON, leaving it empty:

{ ...,

signature: ""

}

Then, with the signature, it must look for either one of the two fields:
user public key or user public certificate, and compute to check if the signa-
ture matches the content and the public key. If it doesn’t, that entry should
be discarded as tainted content and not republished in any way, as the next
user will do the same if it encounters an invalid entry and can ignore anything
beyond that Messiah file.

5. Entry linking

To interact with content already shared by other parties, a user must be
able to refer to previously shared content to provide other users the abil-
ity to look for this missing piece of content and understand the thread of
interactions since its inception.

To refer to other contents, the user must use an SHA-256 hash of the full
entry payload, most of the time this will be available at the index list entry
at the bottom of the transmitted file it is just a case of checking if it is indeed
valid by calculating the hash of the entry and refer to it on the new entry to
be appended to a new messiah file.

On the recipient side, once a user finds a referral to other content, the
first thing he needs to do is look in the index list of this file to see if it is
already present on the same file, if it is there, it will be the entry in the same
position index of the array in the index list, all it needs to do is get the entry
and compute the hash, if it is a match, then it is indeed the content that he
is looking for.

If the content is not there, the user should start looking for this content
in the network for this specific entry hash.

Although hash collisions are possible, with the SHA-256 hashing algo-
rithm it is highly improbable that two entries will ever have the same hash
in available Messiah files active in the network. Over time, as files get older
and the data becomes unused, old hashes should not be a problem also be-
cause clients will stop sharing old files in the network.

6

6. Entry format

Every entry must have this format for other parties to understand and
check it correctly.

When the publisher has no signed certificate yet:

{

"timestamp": "...",

"user_public_key": "...",

...

"signature": "..."

}

When the publisher already has a signed certificate:

{

"timestamp": "...",

"user_public_certificate": "...",

...

"signature": "..."

}

The timestamp must be in ISO-860112 format with date, hour, second,
and without timezone information like this:

2023-04-01T16:32:57.714Z

7. Control Entries

There are entries in Messiah files that have other purposes than sharing
user content, those entries are used to build trust between publishers of the
network, similar to how followers are the proof of stake in social networks.

7.1. User Certificate Sign Request

Once a user wants to publish a Messiah files, the first entry after the
header, as long as his certificate is not signed yet, should be a BASE64 en-
coded, X-509 certificate sign request (CSR). This will provide the possibility

12ISO-8601

7

https://en.wikipedia.org/wiki/ISO_8601

for other parties to sign it’s certificate and share it’s trust level across the
network with the new user.

At the time the user finds a signed certificate that he has the correspond-
ing private key, he should start using this certificate as his certificate entry
in any newly posted content, as this will, in principle, greatly improve his
trustability in the network and it’s content engagement:

{

"timestamp": "...",

"user_public_key": "...",

"user_certificate_sign_request": "...",

"signature": "..."

}

7.2. User Certificate Signed

Once a certificate signer (authority) finds a certificate sign request it
wants to share it’s reputation with, it must return the signed certificate to
the network, the step to do that is to publish a new entry in an existing file
or a brand new file with:

• The full certificate authority chain, also in BASE64, the user must
adopt to verify the certificate authority trust chain, to be used in header
entries;

• The signed user certificate in PEM BASE64 encoded that the user
should start using from now on;

{

"timestamp": "...",

"certificate_authority_chain": "...",

"user_signed_certificate": "...",

"user_public_certificate": "...",

"signature": "..."

}

The certificate authority also needs to add it’s self-signed certificate in
the user public certificate to ease the checking process by other parties, if it
is not there, the user can use the certificate authority chain as the source of
the public key to verify the signature against it as well.

8

7.3. User Certificate Revoked

Sometimes a Certificate Authority can find a certificate he signed, mis-
behaving in the network and might compromise it’s reputation, as a coun-
termeasure, it can revoke the certificate, once this certificate is published as
revoked, every party that finds a revoked certificate must store the certificate
public key fingerprint in it’s internal database to avoid giving voice to bad
actors in the network:

{

"timestamp": "...",

"user_revoked_certificate": "...",

"certificate_authority_chain": "...",

"user_public_certificate": "...",

"signature": "..."

}

In this entry, the certificate authority must also publish it’s entire certifi-
cate chain to prove it has the power to revoke this previously signed certifi-
cate.

7.4. Data Source

As the entire network is completely decentralized, users might want to
share sources of information that might hold the file being shared or even
additional files that might be needed in the future.

The entire system is built on top of existing protocols, so any valid data
source can be shared online, like:

• HTTP / HTTPS addresses
• SFTP / FTP addresses
• Links to standard BitTorrent files
• Magnet BitTorrent URLs

Additional addresses can be added as long as they are supported by other
clients, even specific purpose protocols like TOR13 and IPFS14 can be used
to hold data sources.

The format of a data source entry is pretty simple:

13TOR
14IPFS

9

https://www.torproject.org/
https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf

{

"timestamp": "...",

"data_source": "...",

"user_public_certificate": "...",

"signature": "..."

}

7.5. Reference

Sometimes is not possible to add more entries to existing files, be it
because the file is already too large, or any other reason, for this purpose
the publisher has the option to include a reference to an existing published
Messiah file that should be used as the source of content to new entries in
the current file being built.

The purpose of this reference entry is to show what files the peer reading
this file should look at next to fulfill the sequence of contents posted online
about a topic, the reference is an SHA-256 hash of the complete referenced
file.

There might also be an optional data source entry that can be used to
help other peers easily find those files, this field has the same specification
as the Data Source entry.

{

"timestamp": "...",

"reference": "...",

"data_source": "...",

"user_public_certificate": "...",

"signature": "..."

}

7.6. Alternate Reference

Sometimes a publisher wants to store data in the network that is just a
backup if something goes missing online, for example, he is talking about a
website that might go down somewhere in the future. It doesn’t make sense
for him to include it in the current Messiah file because the website is still
accessible, but it is a good practice to build another file that has the website
backed up and refer to it as an alternate reference.

To do that, he registers in the current file that if that resource becomes
unavailable, this is the backup file the reader should look for in the future.

10

• The original content field must contain the reference used in the files
that might go missing, for example, the website URL.

• The alternate reference field must contain the SHA-256 hash of the
backup file.

The format is:

{

"timestamp": "...",

"original_content": "...",

"alternate_reference": "...",

"user_public_certificate": "...",

"signature": "..."

}

8. Content Entries

Content can be anything that the publisher wants to share, it will be
embedded in the entries and identified by the standard content type naming
convention. If it is binary content, like an image or video, it needs to be
BASE64 encoded as well.

Every content need to have at least one item in the array content with:

• content : text or base64 encoded
• content type: IANA content type naming
• content size: size in bytes of the content

Multiple content can be shared in the same entry, simply adding to the
content array.

8.1. Public Content

Public content is by definition readable by any recipient in the network.
In addition to the 3 common content entries, it may also have a title entry
to provide better context on what is being published. Also, the title enables
the client interface to organize content in a thread-like hierarchy.

{

"timestamp": "...",

"title": "...",

11

"content": [{ content: "...",

content_type: "...",

content_size: ...

},

{ content: "...",

content_type: "...",

content_size: ...

}],

"user_public_certificate": "...",

"signature": "..."

}

8.2. Private Content

Private content in a blockchain-based network can only be achieved by
encryption, a publisher wanting to share something that only some parties
can understand will have to add a modified encoded content entry.

First, he needs to tell whoever is the recipient of the message that it is
addressed to him, it should be inserted in the destinatary field, and the text
identifier can be anything it wants as long as the recipient can recognize it as
addressed to him. Also, this can be left out if there is not really a recipient
for that message.

The rest of the content fields are prefixed with encoded to help the net-
work understand this entry is not plainly readable as every other content.

{

"timestamp": "...",

"destinatary": "...",

"encoded_title": "...",

"encoded_content": [{ content: "...",

content_type: "...",

content_size: ...

},

{ content: "...",

content_type: "...",

content_size: ...

}],

"user_public_certificate": "...",

"signature": "..."

}

12

8.3. Private Content Key

A content publisher might want to publish sensitive content and after the
content is shared across the network, it wants to make it publicly readable by
everyone. An example use case would be a whistleblower wanting to publish
some sensitive content from a risky location and after that, he wants to make
it readable as soon as he in a safe condition.

To provide the keys for the content to be decrypted, it needs to add this
entry to a public Messiah file, preferably at the end of the previous entry with
the encoded content, off course in some conditions it might be impossible.

• encoded content origin is the SHA-256 hash of the encoded entry.
• encoded content encryption algorithm is the encryption algorithm used
to encode it

• encoded content decryption key is the key to decrypting the content
using the encryption algorithm.

{

"timestamp": "...",

"encoded_content_origin": "...",

"encoded_content_encryption_algorithm": "...",

"encoded_content_decryption_key": "...",

"user_public_certificate": "...",

"signature": "..."

}

9. Poll

Let’s say the population of a country wants to make a public poll without
relying on the government polls due to possible corruption in the voting
process. If this country has an open public key infra-structure in place15

that issues certificates for citizens using biometric16 validation, all they need
to do is include the full certificate-chain17 of this public infra-structure in the
header entry of a messiah file, and create a poll like this:

15ICP-Brasil
16ICP-Brasil Biometrics
17ICP-Brasil Certificate Chain

13

https://www.gov.br/iti/pt-br/assuntos/icp-brasil
https://www.gov.br/iti/pt-br/assuntos/noticias/indice-de-noticias/a-biometria-na-icp-brasil
https://www.gov.br/iti/pt-br/assuntos/repositorio/repositorio-ac-raiz

9.1. Poll creation

The user wishing to launch the poll, creates the poll entry with:

• poll name name of the poll.
• poll deadline the end of the election, as a reference.
• option xx each option of the poll.

{

"timestamp": "...",

"poll_name": "...",

"poll_deadline": "...",

"option_1": "description of the candidate 1",

"option_2": "description of the candidate 2",

"option_3": "description of the candidate 3",

"user_public_certificate": "...",

"signature": "..."

}

9.2. Vote

When a person wants to publish its vote, all it needs to do is add a entry
in the file like this:

• poll SHA-256 hash of the entry of the poll.
• vote the selected vote, one of option xx.

{

"timestamp": "...",

"poll": "...",

"vote": "option_1",

"user_public_certificate": "...",

"signature": "..."

}

9.3. Poll finished

The same user that published the original creation of the poll, can and
has the authority to sum all the valid polls before the deadline and publish a
entry like this, at the end of the file, including all the votes before this entry
to be independently validated by any party:

14

• poll SHA-256 hash of the entry of the poll.
• result option x the sum of all the votes computed in option xx.

{

"timestamp": "...",

"poll": "...",

"result_option_1": total_amount_option_1,

"result_option_2": total_amount_option_2,

"result_option_3": total_amount_option_3,

"user_public_certificate": "...",

"signature": "..."

}

10. Interactions

Information-sharing networks are based on user interaction over exist-
ing content, the following entries describe how the user can publish their
interactions as well.

10.1. Republish

Republishing content is the basic interaction a user can do with existing
data, in fact, what he is doing is sharing his trust with existing publishers,
the same behavior can be achieved with the digital signature structure in
Messiah’s files:

Publisher A shares interesting content, and his public key might be trustable
or not in the network depending on who signed his certificate, however, Pub-
lisher B might want to give it some relevance, to do that, he simply repub-
lishes the content with his public key, that might be signed by a more popular
certificate authority and give the content more interest on the network just
by doing that.

To achieve that, he simply shares the original content wrapped in a re-
publish entry: - origin is the original SHA-256 hash entry of that content.
- original content is the complete original content entry as it was first pub-
lished, with all the data along with it to be independently verifiable as well.

{

"timestamp": "...",

"origin": "...",

15

"original_content": { ... },

"user_public_certificate": "...",

"signature": "..."

}

10.2. Reaction

Reactions work similarly, but besides just re-sharing existing content, the
publisher wants to express himself on top of the content, there are two ways
of doing this in the protocol.

The first is using the reaction entry as a simple text reaction, with key-
words:

• liked
• disliked
• loved
• hated
• . . .

The entry is as simple as this:

{

"timestamp": "...",

"origin": "...",

"reaction": "like",

"signature": "..."

}

The second method is to add a small icon to be used as the reaction in
the customer client, the icon must be of any image-type format and with a
pre-defined max squared width and height to fit in the user interface without
too much image resizing as it will inevitably make the picture distorted.

In cases where the user embeds a custom reaction, the reaction field of the
JSON is a content object with the 3 minimum required entries to correctly
display the data:

• content type
• content length
• content

16

This is what it will look like:

{

"timestamp": "...",

"origin": "...,

"reaction": {

"content_type": "...",

"content_length: ...,

"content": "..."

},

"signature": "..."

}

10.3. Comment

The next interaction is adding comments on top of existing content, this
works as a way of putting away more information on top of existing data,
the way to do it is to refer to the original content, preferably attached to the
same Messiah file, and then add the comment entry, the comment itself can
also be of any type, text, image, anything the user thinks is the better way
to express his comment.

{

"timestamp": "...",

"origin": "...",

"comment": {

"content_type": "...",

"content_size": ...,

"content": "..."

},

"signature": "..."

}

10.4. Tag

The next interesting thing to do with existing content helps other users
find what it is about by using tags, the tags are a list of keywords that can
be used to help in searching by other peers on the network.

The tagging process is made by adding an array of text-based content
prefixed with the # sign, as follows:

17

{

"timestamp": "...",

"origin": "...",

"tags": ["#...", "#...", "#..."],

"signature": "..."

}

11. Nested entries

To reduce the number of entries a user need to insert in a file to publish
content, he can choose to nest content from multiple entries in a single one,
of course, some entries don’t make any sense to be nested like content and a
republish, but in principle, there are no restriction of entries that should be
nested together as long as the data is the same.

There is also a benefit in computing power to validate the entry as this
process must be done on each one.

{

"timestamp": "...",

"content_type": "...",

"content_size": ...,

"content": "...",

"reaction": "...",

"tags": ["#...", "#..."],

"user_public_certificate": "...",

"signature": "..."

}

12. Monetization

Due to de decentralized nature of the Messiah network, the ideal mech-
anism to monetize content is to publish, along with any entry, information
about a financial transaction that can be done with the publisher of the
information.

There are interesting use cases that can be implemented:

• A publisher asks for donations over published content;

18

• A publisher requests payment to send the decryption key of private
content to be sent after the payment. Here the decryption entry can
be sent readable by everyone, or encrypted to a single user, usually the
payor of the transaction.

In order to do that, the publisher of the content must add to the entry
the wallet address to where the money must be sent to, along with the
cryptocurrency symbol18 and, if this is a payment and not a donation, the
desired amount to be paid:

{

"timestamp": "...",

"content_type": "...",

"content_size": ...,

"content": "...",

"payment": {

"wallet": "...",

"cryptocurrency": "...",

"amount": ...

}

}

It is important to note that, as this is not a smart contract, there is no
guarantee that the user will receive whatever he is paying for.

13. Distribution Channels

The distribution of Messiah files should be based on existing protocols,
leveraging the large availability of working file-sharing mechanisms and net-
works.

Publishers are encouraged to focus on distributing files over peer-to peer-
networks such as Libp2p19, BitTorrent20, Inter Planetary File System21, Freenet22

due to the uncensorable nature of those protocols.

18Coinmarket Symbol list
19libp2p
20BitTorrent
21IPFS
22Freenet

19

https://coinmarketcap.com/all/views/all/
https://libp2p.io/
https://web.cs.ucla.edu/classes/cs217/05BitTorrent.pdf
https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://freenetproject.org/

Figure 3: Filesystem distribution channel diagram

But in reality, there are two types of channels that can be used by pub-
lishers, centralized and decentralized.

On the centralized model:

• Filesystem
• FTP, FTPS and SFTP
• HTTP and HTTPS

On the decentralized model:

• Libp2p
• BitTorrent & WebTorrent
• IPFS
• Freenet

Also, for censorship mitigation, clients can connect over the TOR23 net-
work to obtain data source URLs to look for additional files on the open
network as a dial-home mechanism.

13.1. Filesystem

The simplest distribution channel can be a shared folder between a group
of users, in order to do that they need to:

• Synchronize continuosly a shared folder between each user, independent
of the protocol, it can be a SMB24, NFS25, Google Drive26, Dropbox27,
or any other service;

23TOR
24Server Message Block
25Network File System
26Google Drive
27Dropbox

20

https://www.torproject.org/
https://en.wikipedia.org/wiki/Server_Message_Block
https://en.wikipedia.org/wiki/Network_File_System
https://en.wikipedia.org/wiki/Google_Drive
https://en.wikipedia.org/wiki/Dropbox

• Create a folder that will be used to store the files that need to be sent
te shared folder, the outbox;

• Create a folder that will be used to store the files that the user has
received, the inbox;

• Continuosly monitor the shared folder for new files, using a filesystem
event mechanism like inotify28, FSEvents29 or similar and copy files
that are not present in the outbox folder (files not built by this user)
to the inbox folder;

• Continuosly monitor the outbox folder for new files and copy them to
the shared folder.

Once this process is estabilished (Figure 3), the distribution channel will
work without the need for a specific purpose server.

Obviously this isn’t scalable and pose security risks to users that don’t
trust each other, but the basic principle can be extended to other file sharing
protocols and services, denoting the adaptability of the network over existing
data sharing protocols, mimicking how the distribution of printed papers
worked in the real world over the centuries.

13.2. FTP/FTPS/SFTP servers

Using FTP30, FTPS31 and SFTP32 servers are interesting alternatives for
data storage because they support:

• upload and download of files of any type;
• anonymous authentication (FTP/FTPS) and public key authentication
(SFTP);

• directory file structure.

To implement indexation in the directory file structure (Figure 4), clients
can organize the files based on dates or even common name(CN) entry of
certificates that are popular in the network.

28inotify - monitoring filesystem events
29File System Events API
30File Transfer Protocol
31Securing FTP with TLS
32SFTP Protocol

21

https://man7.org/linux/man-pages/man7/inotify.7.html
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/FSEvents_ProgGuide/UsingtheFSEventsFramework/UsingtheFSEventsFramework.html
https://www.rfc-editor.org/rfc/rfc959
https://datatracker.ietf.org/doc/html/rfc4217
https://www.sftp.net/specification

Figure 4: FTP distribution channel diagram

Multiple servers can be referred as Data Sources entries inside Messiah
files themselves to improve data availability beyond libp2p peers or BitTor-
rent Magnet URLs.

Besides being centralized distribution channels, public FTP/FTPS servers
can be hosted by anyone as long as files can be uploaded and downloaded
freely, in fact, an open, anonymous server can host files to the entire network.

It even doesn’t matter if the server stops working in the future, as long
as it distributed files to other readers, it already helped the network spread
new data to other peers in a specific point in time, as new entries can always
be appended to existing Messiah’s files, new FTP file repositories are easy
to be shared among the network anytime.

13.3. HTTP/HTTPs servers

Web servers are de facto the standard for web2 services, a implementation
needs at least 3 endpoints to correctly implement distribution of Messiah’s
files:

A webservice needs to implemented with 3 endpoints:

• List files - example: GET /files
• Download a specific file - example: GET /file/filename.messiah
• Upload a file - example: POST /files/filename.messiah

Once the server receives a new file, his first action should be to validate
the contents based on the public keys listed in the file itself, only after that
the file should be listed to other users.

13.4. Libp2p

The Libp2p33 is a spin-off of the IPFS34 project, the developers of the
platform realized their peer to peer stack could be used in any application

33libp2p
34IPFS

22

https://libp2p.io/
https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf

and separated the implementation of the data exchange stack to the file
system stack.

The library supports many protocols and peer discovery methods, two of
them are quite interesting as a distribution mechanism:

• Gossipsub35, a channel oriented broadcast36 messaging system that can
be used to announce new files available in the Messiah network, the peer
subscribes to a named channel and receives any announcement sent to
that channel by any other peer on the network.

• Dial37 mechanism is a direct peer to peer connection that can be used
to transfer files between them over the choosen transport layer (TCP,
Websocket, WebRTC) and the choosen encryption protocol. The pro-
cess of determining the right end-point information is abstracted by the
libp2p implementation and can even use a routing peer when two peers
trying to exchange data don’t have means of communicating between
themselves (when both are under a firewall for example).

See figure 5 example diagram below.
The peer discovery mechanism can use different strategies like a initial

seed of known nodes on the network, random walking valid ip addresses,
mdns for local networks, etc. As a last resource the application can fallback
to connect to an TOR endpoint and ask for a list of available peers to use as
seed if none of the previous strategies resulted in discovering remote peers.

13.5. BitTorrent & WebTorrent

BitTorrent38 is the most successful peer-to-peer file-sharing protocol39

ever built, designed to optimize transfer between peers without consuming
too much bandwidth from a central server, today it is used in almost every
content distribution network on large scale.

Originally built to use trackers servers as repositories of peers’ informa-
tion (IPs and ports) that had available pieces of files, currently, the DHT40

35Gossipsub
36Pubsub
37Peer Dialing
38Original Specification
39BitTorrent Specification Improved
40DHT Extension

23

https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/README.md
https://docs.libp2p.io/concepts/pubsub/overview/
https://docs.libp2p.io/concepts/transports/listen-and-dial/
http://bittorrent.org/beps/bep_0009.html
https://wiki.theory.org/BitTorrentSpecification
http://bittorrent.org/beps/bep_0005.html

Figure 5: libp2p diagram

24

extension to the protocol enables peers to behave like trackers and share node
lists among themselves using Kademlia (Peter Maymounkov, 2002).

In the previous versions, it was necessary to share .torrent files with the
info-hash list of each piece of a file. The Magnet41 URLs extension made it
possible to share files with specially built URLs that can be easily shared
across peers.

Unfortunately, a client running the BitTorrent protocol will still need to
find a list of available Magnet URLs online to know what files to ask for from
other nodes on the available torrent network, be it a legacy tracker or a DHT
node42.

Possible solutions:

• An extension for the torrent protocol to enable nodes to show lists of
available info-hashes that are currently active in the network.

• Use of libp2p Gossipsub43 protocol to broadcast files using magnet
URLs.

• A database of HTTP/HTTPS/FTP/SFTP servers that can provide
lists of magnet URLs to the client.

• A TOR endpoint might need to be used if none of the above options
work.

WebTorrent is another possible solution to enable web clients to download
files without a central server, A Messiah web client can support Webtorrent44

protocol to share files between web browsers using only WebRTC.
This enables any website that hosts a web-based client to start sharing

the Messiah’s files stored in the client’s computers, effectively using the pub-
lisher’s computers for storage and distribution and the web server hosted on
any URL as an index of available info-hashes to be shared among different
customers.

Even multiple instances of the same web based client, running on differ-
ent web servers will eventually share nodes and magnet URLs among them
because of the decentralized nature of the BitTorrent protocol.

41Magnet URLs
42Storing arbitrary data in the DHT
43Gossipsub
44WebTorrent

25

http://bittorrent.org/beps/bep_0009.html
http://bittorrent.org/beps/bep_0044.html
https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/README.md
https://webtorrent.io/

14. Conclusion

Trust the control of what can or can’t be shared online to private tech
companies was an inevitable path until now, however with the use of cryp-
tography, blockchain, peer-to-peer data transfer, and near unlimited data
storage and transfer, there is a real possibility to turn the tide from an op-
pressive society towards his citizens based in information control, to a new
era of true freedom of speech.

This document is a initial step in that direction.
I will release a complete working opensource prototype sometime in the

future, hoping others will join this battle against censorship.
If you wish to be notified when this happens, go to my TOR website at:

http://n5zefucqctip5ujzcokmvdavdddsnvfk74thdwfhqgexkiwrw3xp2rad.onion and
sign-up.

15. Proof of Authority

To check if this paper is indeed written by Jimjo, below is my public key.
There is a PDF signature on the first page of this paper that can be verified
with this key.

-----BEGIN PUBLIC KEY-----

MIIEIjANBgkqhkiG9w0BAQEFAAOCBA8AMIIECgKCBAEAzJ0Rk5yvowMn4471dFpR

69R5k+/8pIA+J/VEArG7zFvwJ07o49acNHiwjuCCT0YWu6PL4fVSRE5/iV3jo5Jk

hnrBlTpL9hMcnorPOePatpWK72Xfr+iu6mZDwcGm2m44lMa/W9m4XEHJ/p1D/e1a

HNROasCEF9u64PHyiU89vfqrc6PDyZWQ+NRbvVwKs9W/ofBYtLqw2HwKk6tJRWKZ

cbd4O+YCGBAy8ah3EkpjUBsGEf1xxxgnLdPxMsaYCLv3lfOK1nZuQeYTaUCFJgHp

HtvnkMk2tJAEdesCD//Mh1l7/GFLIwqeTL6LiD9WY9qu1WHDxa3OgF0HenjGiYb1

r8ZUay1K6Wnb9f7OZ3EViuDILZAxVP9KmXGfJzuOdVsqAzHzUFmBRv+vgnynPt9N

Ijpp79QpgqKFYD8z0T7lZFoxAYxnpTH9EntKunktr5qhMGrj5lIHmfvE9rwAyr/p

7clwDR250BgGZMt6pCycALcC9MBQqzuoXwVNySerAR3ASGefOnxaU+FvId/7ZXxL

SSGeeFNtMU9wS4NvWGjWmuytZSXvYgEdSnMUejwyJOMEO0zvzfX7A974ZJMidBGF

jvpr7lp7F3ew+oiOhRIGihOTOcOvfbJ/iPZNmPNIeGBAfZI32pQJWgNseYVYa32T

SziBUxqEkEbJessMPQf7VMhndFmPs0ocOMC8Ez4ahgAj/EadmaYqgJWya5bzKpiC

PrMXw8fxuDYlASs1q9IL0ShTX4YV1/An4XHpvFg25gObgksXoUv5S3mVajbpchzC

U4JETPET5awzGG2gE7TU07zgBLs4GZG36qHqZc83kpheF4NZChrhj7l+9MkldwuA

t9s7dof6t2xhu+xir8D3YY24mA9xBXxN4Ox2HHhdmJRFx22VPpOZXOnQD1ufoFja

CkEl3DSuMh3gxXbrVonsJZMAG43PIizWPSDAYyXAAQADeponNiBnbfTy54WanGCs

26

7Niewa6SlIJncQ8c7966PUNNGGoqkYRwmwzOF5Bl5Hn5cDo3JYtiLpR9CTaLKx5Y

t7U3r3HEj/EWdSx5/AgyadB16Ij1aoBPZKCvRYsiLhe0p0r452RSMJF9k6bAm6/T

SQB7O1ucV4L3mo9I3N3bAEX+zbyLs6ymeL1Gq0cyW2ESPqQ21wLooCMU1IAnmH3M

rJfvEGKKDP5jk/n+uj2e5cDHJUChJ5MUopmpgikHT2wa6OUcXUkiK2DtYEJDz886

OhNkJJPYBlEMVJ8RqmwVOjH/ZcGROGKpcwCWx1dhC/6e3iRETtDhUXG7oc+/bJkX

M3vJO6A3wSNKGOmQV2T+YlrOW05g2DiI3WbXCiZ/QcmmHYsQtgxuixnfqbKZixuL

6wIDAQAB

-----END PUBLIC KEY-----

References

Bray, T., 2014. The javascript object notation (json) data interchange format
.

Housley, R., Polk, T., Ford, D.W.S., Solo, D., 2002. Internet X.509 Pub-
lic Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 3280. URL: https://www.rfc-editor.org/info/rfc3280,
doi:10.17487/RFC3280.

Nakamoto, S., 2008. Bitcoin: A peer-to-peer electronic cash system URL:
https://bitcoin.org/bitcoin.pdf.

Peter Maymounkov, D.M., 2002. Kademlia: A peer-to-peer information sys-
tem based on the xor metric. IPTPS URL: http://www.cs.rice.edu/
Conferences/IPTPS02/109.pdf.

27

https://www.rfc-editor.org/info/rfc3280
http://dx.doi.org/10.17487/RFC3280
https://bitcoin.org/bitcoin.pdf
http://www.cs.rice.edu/Conferences/IPTPS02/109.pdf
http://www.cs.rice.edu/Conferences/IPTPS02/109.pdf

	Introduction
	File format
	File naming
	Signature
	Entry linking
	Entry format
	Control Entries
	User Certificate Sign Request
	User Certificate Signed
	User Certificate Revoked
	Data Source
	Reference
	Alternate Reference

	Content Entries
	Public Content
	Private Content
	Private Content Key

	Poll
	Poll creation
	Vote
	Poll finished

	Interactions
	Republish
	Reaction
	Comment
	Tag

	Nested entries
	Monetization
	Distribution Channels
	Filesystem
	FTP/FTPS/SFTP servers
	HTTP/HTTPs servers
	Libp2p
	BitTorrent & WebTorrent

	Conclusion
	Proof of Authority

		2024-03-10T14:13:59-0300

